[High-resolution patch-clamp technique based on feedback control of scanning ion conductance microscopy].
نویسندگان
چکیده
The ion channels located on the cell fine structures play an important role in the physiological functions of cell membrane. However, it is impossible to achieve precise positioning on the nanometer scale cellular microstructures by conventional patch-clamp technique, due to the 200 nm resolution limit of optical microscope. To solve this problem, we have established a high-resolution patch-clamp technique, which combined commercial scanning ion conductance microscopy (SICM) and patch-clamp recording through a nanopipette probe, based on SICM feedback control. MDCK cells were used as observation object to test the capability of the technique. Firstly, a feedback controlled SICM nanopipette (approximately 150 MOmega) non-contactly scanned over a selected area of living MDCK cells monolayer to obtain high-resolution topographic images of microvilli and tight-junction microstructures on the MDCK cells monolayer. Secondly, the same nanopipette was non-contactly moved and precisely positioned over the microvilli or tight-junction microstructure under SICM feedback control. Finally, the SICM feedback control was switched off, the nanopipette slowly contacted with the cell membrane to get a patch-clamp giga-ohm sealing in the cell-attached patch-clamp configuration, and then performed ion channel recording as a normal patch-clamp electrode. The ion channel recordings showed that ion channels of microvilli microstructure opened at pipette holding potential of -100, -60, -40, 0, +40, +60, +100 mV (n=11). However, the opening of ion channels of tight-junction microstructure was not detected at pipette holding potential of -100, -40, 0, +40, +100 mV (n=9). These results suggest that our high-resolution patch-clamp technique can achieve accurate nanopipette positioning and nanometer scale high-resolution patch-clamp recording, which may provide a powerful tool to study the spatial distribution and functions of ion channel in the nanometer scale microstructures of living biological samples.
منابع مشابه
Scanning ion conductance microscopy: a nanotechnology for biological studies in live cells
Scanning ion-conductance microscope (SICM), which enables high-resolution imaging of cell surface topography, has been developed for over two decades. However, only recently, a unique scanning mode is increasingly used in biological studies to allow SICM to detect the surface of live cells. More recently, in combination with confocal microscopy and patch-clamp electrophysiological techniques, S...
متن کامل"MS-Patch-Clamp"or the Possibility of Mass Spectrometry Hybridization with Patch-Clamp Setups for Single Cell Metabolomics and Channelomics
In this projecting work we propose a mass spectrometric patch-clamp equipment with the capillary performing both a local potential registration at the cell membrane and the analyte suction simultaneously. This paper provides a current literature analysis comparing the possibilities of the novel approach proposed with the known methods, such as scanning patch-clamp, scanning ion conductance micr...
متن کاملScanning Ion Conductance Microscopy for Studying Biological Samples
Scanning ion conductance microscopy (SICM) is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sheng li xue bao : [Acta physiologica Sinica]
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2010